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Abstract— This project focuses on automating the detection of 
Invasive Ductal Carcinoma (IDC), the most common and 
aggressive form of breast cancer, using deep learning techniques. 
IDC diagnosis traditionally relies on pathologists manually 
identifying cancerous regions in breast tissue, a time-consuming 
and expertise-dependent process. To address this, we developed a 
convolutional neural network (CNN) model capable of classifying 
and localizing cancerous tissue in histopathology images. The 
dataset consisted of over 277,000 patches from 279 patients, 
containing both IDC-positive and IDC-negative samples. To 
combat issues such as class imbalance and overfitting, we 
employed strategies like data augmentation by flipping 
cancerous images, as well as using dropout and max-pooling 
layers to optimize model performance. Our CNN model achieved 
a classification accuracy of 92%, effectively distinguishing IDC-
positive from IDC-negative patches. The results show that our 
model provides a reliable, automated method for IDC detection, 
significantly streamlining the diagnostic process and improving 
accuracy. This work underscores the potential of deep learning 
in medical imaging, offering both efficiency and precision in 
clinical settings, ultimately aiding in timely and accurate breast 
cancer diagnosis. 

 
I. INTRODUCTION 

Breast cancer is a major health concern worldwide, with 
early detection playing a key role in improving patient 
outcomes. Invasive ductal carcinoma (IDC) is the most 
common type of breast cancer, accounting for around 80% of 
cases. It is known for its aggressive nature and ability to 
spread to other parts of the body, making timely and accurate 
diagnosis crucial. 

 
Currently, the diagnosis of IDC relies on manual 

evaluation of tissue samples by pathologists, which can be 
time-consuming and subjective. Advances in deep learning, 
particularly Convolutional Neural Networks (CNNs), offer 
the potential to automate this process. CNNs are specialized 
in image analysis and are highly effective in recognizing 
patterns within complex data like medical images. By 
leveraging large datasets of tissue images, CNNs can be 
trained to detect and locate cancerous cells, providing 
consistent and efficient analysis. This approach could reduce 
reliance on manual methods and offer improved diagnostic 
capabilities, especially in regions with limited access to 
medical experts. In this study, we explore the use of deep 
learning techniques, particularly CNNs, to automatically 
detect IDC, building on previous research while incorporating 
more modern methods to enhance accuracy and efficiency. 

II. LITERATURE    REVIEW 

A. What is Deep Learning? 

Deep learning is a subset of machine learning that uses 
artificial neural networks to mimic the way the human brain 
processes information. By stacking multiple layers of neurons, 
deep learning models can automatically extract complex 
features from raw data. This makes deep learning particularly 
effective for tasks like image and speech recognition, where 
traditional algorithms struggle with the high-dimensional 
nature of the data. [1]  

 
In the medical field, deep learning has shown great 

potential, with use cases ranging from detecting tumors in 
medical imaging to predicting patient outcomes. For example, 
Convolutional Neural Networks (CNNs) are widely used in 
analyzing radiology scans, while Recurrent Neural Networks 
(RNNs) are applied in time-series data, such as 
electrocardiograms (ECG), to monitor heart conditions. [2] 

 

 
Fig. 1. Deep Neural Network with Multiple Layers  

 

B. Convolutional Neural Networks (CNNs)  

Convolutional Neural Networks are a specialized type of 
deep learning model designed for processing structured grid 
data, such as images. Unlike traditional neural networks, 
CNNs use convolutional layers to automatically extract spatial 
features from input data. A convolution operation applies 
filters to the input, effectively scanning the image for patterns 
like edges, textures, and shapes. The output of these 
convolutions is passed through an activation function, 
typically ReLU (Rectified Linear Unit), to introduce non-
linearity. [3] 
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CNNs also employ pooling layers, such as max pooling, to 
down sample feature maps, reducing dimensionality and 
computational complexity while retaining important 
information. This hierarchical approach allows CNNs to learn 
increasingly complex patterns in deeper layers. [4] 

 
To optimize the model, CNNs utilize backpropagation 

along with gradient-based optimization techniques like 
stochastic gradient descent (SGD) or its variants, such as 
Adam, to minimize the loss function making CNNs both 
efficient and robust for tasks like image classification, object 
detection, and medical image analysis. [5] 

 

 
Fig. 2. Convolutional Neural Network Architecture  

 

C. Convolutional and Pooling Layers 
In CNNs, convolutional layers are the cornerstone of 

feature extraction. Each convolutional layer applies multiple 
filters (kernels) to the input image, performing convolution 
operations that slide the filters across the image to produce 
feature maps. These filters are designed to detect specific 
features, such as edges or textures, at various spatial locations 
within the image. The result is a set of feature maps that 
highlight different aspects of the input data. [6] 

 

 
Fig. 3. Representation of a Convolutional Layer  

 
Pooling layers, specifically max pooling, follow 

convolutional layers to reduce the spatial dimensions of the 
feature maps while preserving the most critical information. 
Max pooling works by dividing the feature map into non-
overlapping regions and selecting the maximum value within 
each region, thus reducing the data and computational 
complexity. This process also helps in achieving translational 
invariance, allowing the network to recognize features 
regardless of their position in the input image. Together, 
convolutional and pooling layers enable CNNs to efficiently 
learn hierarchical features and improve performance on tasks 
like image classification and object detection. [7] 

 
Fig. 4. Representation of a Max Pooling Layer  

D. Activation Function and Loss Function  
The hyperbolic tangent activation function is commonly 

used in neural networks to introduce non-linearity. It maps 
input values to a range between -1 and 1, allowing the network 
to handle both positive and negative activations, making it 
particularly useful for problems where the data may have a 
more balanced range of values. The output of the tanh function 
is centered around zero, which helps mitigate issues like 
vanishing gradients to some extent, compared to the sigmoid 
activation function. However, like sigmoid, tanh can still 
suffer from gradient saturation when inputs are in extreme 
ranges. [8] 

 

 
Fig. 5. Representation of the Tanh and Sigmoid Activation Functions 

 
The binary cross-entropy, is used to measure the 

performance of a classification model where the output is a 
probability between 0 and 1. Log loss penalizes incorrect 
predictions more heavily as they deviate from the true label, 
making it particularly suitable for binary classification tasks. 
The function computes the negative log likelihood of the true 
labels, resulting in a loss value that the model seeks to 
minimize during training. By optimizing log loss, models are 
encouraged to output probabilities that are as close as possible 
to the true labels, leading to improved accuracy in 
classification tasks. [9] 

 

𝐽(𝑊) = 	−
1
𝑛*𝑦. log(𝑦0) + (1 − 𝑦). log	(1 − 𝑦0)

!

"#$

 

 

E. Invasive Ductal Carcinoma (IDC) 
Invasive ductal carcinoma (IDC) is the most common type 

of breast cancer, accounting for nearly 80% of all cases. IDC 
begins in the milk ducts of the breast but quickly invades 
surrounding tissues, allowing it to spread (metastasize) to other 
parts of the body if not detected early. The malignancy of IDC 
makes timely diagnosis crucial for patient outcomes. [10] 

 
The diagnosis of IDC typically involves a biopsy, where a 

pathologist examines tissue samples to identify cancerous cells 
and assess the stage of the disease. This process, however, is 
labor-intensive and prone to human error, as the pathologist 
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must manually search for malignant cells. Recent 
advancements in deep learning, especially through CNNs, 
have paved the way for automated detection and localization 
of IDC in medical images, offering a faster and more 
objective means of diagnosis. By analyzing vast datasets of 
breast tissue images, CNNs can be trained to recognize IDC 
with high accuracy, improving diagnostic efficiency and 
aiding in treatment planning. [11] 

 

Fig. 6. Visualizing Benign and Malignant Breast Tissue 

 

III. METHODOLOGY 

A. Problem Statement 

The primary problem this study aims to address is the 
accurate detection and localization of invasive ductal 
carcinoma (IDC) in breast tissue images to improve early 
diagnosis and treatment planning. Pathologists often rely on 
manual examination of tissue samples, a process that can be 
time-consuming, subjective, and prone to error. Given the 
aggressive nature of IDC and its potential to metastasize, 
timely and precise diagnosis is critical. Without efficient 
detection methods, delays in diagnosis may lead to 
suboptimal treatment outcomes, putting patients at higher 
risk. 

 

B. Importing Libraries 

Python offers a wide range of libraries that make data 
analysis, visualization, and machine learning more accessible 
and efficient. Below are the libraries used in this project 

 
Pandas Python library for data manipulation and analysis 

Numpy Python library for linear algebra using arrays and 
matrices 

Matplotlib Python library for basic data visualizations 

Seaborn Python library for advanced data visualizations 

Scipy Python library for scientific and technical computing 

Scikit-learn Python library for machine learning algorithms 

TensorFlow Python library for deep learning algorithms 

Table 1. Libraries Used for this project  

C. Overview of the Breast Histopathology Dataset 

The dataset used in this study contains breast cancer image 
data from 279 patients, with each patient identified by a unique 
patient ID. From the whole mount slides of these patients, a 
total of 277,524 image patches were extracted, each sized 
50x50 pixels. These patches are classified as either malignant 
(IDC-positive) or benign (IDC-negative), with 78,786 labeled 
as IDC-positive and 198,738 labeled as IDC-negative.  

 
The primary goal of this dataset is to aid in the detection and 

localization of Invasive Ductal Carcinoma (IDC), the most 
common type of breast cancer. Pathologists typically focus on 
IDC regions when assigning aggressiveness grades to the 
cancer. This dataset provides a foundation for training machine 
learning models to automatically identify and delineate IDC 
regions, supporting faster and more accurate diagnostic 
processes. 

 
Fig. 7. Checking Data Types 

 

D. Exploratory Data Analysis 

In this section, we perform an Exploratory Data Analysis 
(EDA) to better understand the structure and key 
characteristics of the dataset. EDA is essential for identifying 
trends, spotting anomalies, and providing a general overview 
of the data before diving into any deep learning algorithms. 

 

1) Distribution of Patches by Patient 

 

Fig. 8. Representation of the Number of Patches by Patient 
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The distribution of the number of image patches per 
patient in the dataset shows significant variation, which raises 
questions about potential differences in the resolution or size 
of tissue samples between patients. The dataset consists of 
279 patients, with an average of approximately 995 patches 
per patient. The minimum number of patches for a patient is 
63, while the maximum is 2,395, showing a substantial range. 
The interquartile range (IQR) also highlights this variation, 
with 25% of patients having fewer than 561 patches and 75% 
having fewer than 1,362 patches. This variability suggests 
that the size of the tissue samples, or the way they were 
processed, differs significantly between patients, which could 
impact the resolution or content of the image patches used for 
analysis. 

 

2) Distribution of the % of Patches containing IDC 

The distribution of the percentage of patches 
containing Invasive Ductal Carcinoma (IDC) across patients 
reveals significant variability in the concentration of 
cancerous regions. On average, 30.8% of patches per patient 
show IDC, but the standard deviation of 20.1% indicates wide 
fluctuations. Some patients have as little as 1% of their 
patches showing IDC, while others have up to 90%, 
suggesting that certain tissue slices are either densely 
cancerous or that only cancer-focused regions were sampled.  
The interquartile range shows that 25% of patients have fewer 
than 13.8% IDC-positive patches, while 75% have fewer than 
44.6%.  

 
Fig. 9. Representation of the Distribution of Patches 

 
This variability raises the question of whether the 

tissue slices per patient cover the entire region of interest or 
only specific sections where cancer is concentrated. In cases 
where over 80% of patches show IDC, it may indicate either a 
highly aggressive spread of the cancer or a selective sampling 
of cancerous regions, rather than a comprehensive scan of the 
breast tissue. 

 
3) Number of Benign and Malignant Patches 

 
Fig. 11. Representation of the Benign and Malignant Patches 

The dataset exhibits a noticeable class imbalance 
between IDC-positive (cancerous) and IDC-negative (healthy) 
patches. Out of a total of 277,524 image patches, 198,738 are 
IDC-negative (71.6%), while 78,786 are IDC-positive 
(28.4%). This imbalance can pose challenges for machine 
learning models, as they may become biased toward the 
majority class (healthy patches) and underperform in detecting 
cancerous regions.  

 
To address this, it will be important to revisit the class 

distribution when setting up a validation strategy. Strategies 
such as adjusting class weights, oversampling IDC-positive 
patches, or undersampling IDC-negative patches can help 
ensure that the model accurately identifies cancerous patches, 
even with the imbalance present in the dataset. 

 

 
Fig. 12. Representation of Malignant Patches 

 
When visually comparing normal and cancerous breast 

tissue, certain color differences become apparent. Cancerous 
tissue is often stained with a more intense red color, which 
makes it visually distinct from healthy tissue. In many cases, 
darker, more violet-colored areas tend to correspond to 
cancerous regions, while lighter, rose-colored tissue is often 
non-cancerous.  

 
However, this is not always a reliable indicator, as some 

violet areas may not be cancerous. This raises a concern: if 
violet tissue is associated with mammary ducts rather than 
cancer, a model trained on these visual cues might mistakenly 
learn that the presence of mammary ducts is always linked to 
cancer. This potential bias highlights the need for caution 
when developing automated models, ensuring they 
differentiate between actual cancerous tissue and natural 
anatomical structures. 
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E. Modeling  

1) Data Augmentation 

 

Fig. 13. Representation of the Data Augmentation Technique 

 
Data augmentation has proven essential in addressing 

class imbalance and enhancing the robustness of our model. 
Specifically, the horizontal flipping of images has been a 
valuable technique in this context. Originally, the dataset was 
skewed with only 78,786 malignant images, leading to 
potential biases in model training. By horizontally flipping 
these malignant images, we effectively doubled their count, 
resulting in 157,572 malignant images. This augmentation has 
significantly improved the balance between malignant and 
benign images, which now stands at 45% and 55%, 
respectively.  

 
The addition of these flipped images helps the model 

generalize better by exposing it to a greater variety of image 
orientations and reducing the risk of overfitting to the 
original, unaltered images. Overall, horizontal flipping has 
not only mitigated the initial imbalance but also enhanced the 
model’s ability to learn more robust features from the 
augmented dataset. 

 
 

2) Data Partition  

 

Fig. 14. Representation of the Different Sets  

 
The data partitioning for this image classification task 

is designed to ensure balanced training, validation, and testing 
phases. The dataset has been divided as follows: 70% for the 
training set, amounting to 249416 images; 15% for the 
validation set, totaling 53447 images; and 15% for the test 
set, also consisting of 53447 images.  

 
 
 

Initially, the dataset was imbalanced, containing 78786 
malignant images. However, after applying data augmentation 
techniques, the number of malignant images has increased to 
157572, balancing the dataset with 198738 benign images. 
This augmentation has effectively addressed the initial class 
imbalance, leading to a more equitable distribution of 
malignant (45%) and benign (55%) images across the entire 
dataset. This balanced distribution is crucial for training a 
robust model and ensuring fair evaluation across both classes. 

 

3) Data Preprocessing 

In this data preprocessing phase, we used the 
ImageDataGenerator class from Keras to load and preprocess 
images for a deep learning model.  

 

 
Fig. 15. Data Preprocessing  

 
First, the ImageDataGenerator is initialized with a 

“rescale” parameter that normalizes pixel values by dividing 
by 255, ensuring that all pixel values are scaled between 0 and 
1. Next, the flow_from_dataframe method is used to convert 
the image paths and labels into datasets. For the training, 
validation, and test sets, the images are loaded from the file 
paths. Each image is resized to a fixed dimension of 50x50 
pixels, which is specified by IMG_HEIGHT and 
IMG_WIDTH, and they are batched in groups of 32 using 
BATCH_SIZE. The “class_mode” is set to "binary" because 
this is a binary classification problem (Malignant vs. Benign). 
The datasets are shuffled to ensure random ordering of 
samples, and a seed value of 42 is provided to maintain 
reproducibility. This approach ensures that the images are 
correctly preprocessed and ready to be fed into the CNN 
model for training, validation, and testing. 
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4) Model Architecture 

The chosen CNN architecture is designed to effectively 
handle the classification task with a focus on balancing 
performance and generalization.  

 
Fig. 16. Summary of the proposed model 

 
The model starts with two convolutional layers, each with 

32 filters, a kernel size of 3x3, and ReLU activation. These 
layers use 'he_uniform' initialization and 'same' padding to 
preserve the spatial dimensions of the input. Batch 
Normalization is applied after each convolutional layer to 
stabilize and accelerate training by normalizing the 
activations. MaxPooling is used after the first two 
convolutional blocks to downsample the feature maps, 
reducing their spatial dimensions and computational 
complexity. Dropout layers with a rate of 0.3 are included to 
prevent overfitting by randomly setting a fraction of the 
neurons to zero during training. 
 

The model then progresses to two additional 
convolutional blocks with 64 filters each, followed by another 
pooling layer and dropout. This deepens the network and 
allows it to capture more complex features. The final 
convolutional block has 128 filters to extract high-level 
features before flattening the output for the dense layers. 
 

The dense layers follow, starting with 128 units and 
decreasing to 64 units, all with ReLU activation and Batch 
Normalization. This dense architecture helps in learning 
complex patterns from the features extracted by the 
convolutional layers. The final dense layers, including an 
ultimate layer with 24 units and a final output layer with a 
single unit using a 'sigmoid' activation function, are designed 
for binary classification. The model is compiled with the 
'Adam' optimizer and 'binary_crossentropy' loss function, 
optimizing performance for the classification task. 

 

 

Fig. 17. Architecture of the proposed model 

 
 

IV. RESULTS AND EXPERIMENTS 

The results of the training and validation accuracies, 
compared to the average pathologist accuracy of 85% in 
detecting invasive ductal carcinoma (IDC) show a promising 
performance of the model.  
 

 

Fig. 18. Accuracy and Loss Evolution  
 

During training, the accuracy steadily increases from 
around 84.3% in the first epoch to approximately 97.5% in the 
final epoch, indicating that the model is learning effectively. 
The validation accuracy starts at 50% for the initial epochs, 
which suggests the model struggled at the beginning to 
generalize. However, by the 7th epoch, the validation accuracy 
significantly improves, reaching up to 95%, which surpasses 
the pathologist's average accuracy of 85%.[12] This suggests 
that the model, after sufficient training, can potentially 
perform better than a human pathologist in detecting IDC. 
 

The losses also reflect this trend. While the training loss 
decreases consistently, showing that the model fits the training 
data well, the validation loss begins high and gradually drops 
after the 6th epoch, further indicating improved generalization. 
The model's performance, particularly from epoch 7 onward, 
demonstrates that it has learned to generalize and provide high 
accuracy on unseen validation data, making it an effective tool 
for breast cancer detection. However, it's important to ensure 
that the model does not overfit and that further tests on 
different datasets are conducted. 
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V. CONCLUSION 

In conclusion, this project demonstrates the application 
of deep learning, particularly convolutional neural networks 
(CNNs), in automating the detection of invasive ductal 
carcinoma (IDC) from breast tissue images. By leveraging 
image data preprocessing, model training, and evaluation 
strategies, we aimed to enhance the accuracy and efficiency 
of IDC classification. Although challenges such as class 
imbalance and potential overfitting were encountered, 
techniques like data augmentation and appropriate model 
regularization were employed to mitigate them. This 
automated approach not only helps in accelerating the 
diagnostic process but also offers potential improvements in 
precision, ultimately aiding in timely and accurate medical 
decision-making for breast cancer patients. 
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